Twist promotes invasion and cisplatin resistance in pancreatic cancer cells through growth differentiation factor 15.
نویسندگان
چکیده
Pancreatic cancer (PC) is an aggressive and devastating disease with a poor prognosis. Cisplatin, a commonly used chemotherapeutic agent for solid tumors, is effective as a single agent or in combination with other drugs for the treatment of PC. Previous studies have suggested that Twist and growth differentiation factor 15 (GDF15) are involved in the progression of PC. However, the role of Twist and GDF15 in PC remains to be elucidated. In the present study, the individual effect of and interaction between Twist and GDF15 in PC cell invasion and chemoresistance to cisplatin was examined. Twist and/or GDF15 were stably overexpressed or knocked down in ASPC‑1 and BXPC‑3 human PC cells. Overexpression of Twist in the two cell lines markedly increased GDF15 expression, cell invasion, matrix metalloproteinase‑2 expression/activity and the half maximal inhibitory concentration (IC50) values of cisplatin, which was eradicated by GDF15 knockdown or the selective p38 mitogen‑activated protein kinase (MAPK) inhibitor SB203580 (10 µM). By contrast, Twist knockdown significantly decreased GDF15 expression, cell invasion, matrix metalloproteinase‑2 expression/activity and the IC50 values of cisplatin, which was completely reversed by overexpression of GDF15. In addition, while overexpression and knockdown of Twist increased and decreased p38 MAPK activity, respectively, GDF15 demonstrated no significant effect on p38 MAPK activity in PC cells. In conclusion, the present study, for the first time, to the best of our knowledge, demonstrated that Twist promotes PC cell invasion and cisplatin chemoresistance through inducing GDF15 expression via a p38 MAPK‑dependent mechanism. The present study provides new insights into the molecular mechanisms underlying PC progression and chemoresistance.
منابع مشابه
DeltaNp63alpha-Mediated Induction of Epidermal Growth Factor Receptor Promotes Pancreatic Cancer Cell Growth and Chemoresistance
Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to current chemotherapy regimens, in part due to alterations in the p53 tumor suppressor pathway. p53 homolog p63 is a transcription factor essential for the development and differentiation of epithelial surfaces. However its function in cancer is controversial and its role in PDAC is not known. We discovered that ΔNp63α was the predom...
متن کاملRole of crocin in several cancer cell lines: An updated review
Cancer is a major public health problem worldwide. The most important considerable features of cancer cells are uncontrolled proliferation, up-regulated differentiation, and immortality. Crocin, as a bioactive compound of saffron and as a water-soluble carotenoid has radical scavenging, anti-hyperlipidemia, memory improving, and inhibition of tumor growth effects. The present review was designe...
متن کاملTwist promotes angiogenesis in pancreatic cancer by targeting miR-497/VEGFA axis
Angiogenesis is a critical step in the growth and dissemination of malignant diseases, including pancreatic cancer. Twist has been shown to stimulate angiogenesis in the tumor site. However, whether Twist contributes to angiogenesis in pancreatic cancer remains unknown. In this paper, we found that the expression of Twist was significantly increased in human pancreatic cancer cell lines and pan...
متن کاملEGFR Blockade Reverses Cisplatin Resistance in Human Epithelial Ovarian Cancer Cells
Background: Epithelial ovarian cancer (EOC) is one of the most lethal gynecological malignancy worldwide. Although the majority of EOC patients achieve clinical remission after induction therapy, over 80% relapse and succumb to the chemoresistant disease. Previous investigations have demonstrated the association of epidermal growth factor receptor (EGFR) with resistance to cytotoxic chemotherap...
متن کاملMUC4 potentiates invasion and metastasis of pancreatic cancer cells through stabilization of fibroblast growth factor receptor 1.
MUC4 is a type-1 transmembrane mucin differentially expressed in multiple cancers and has previously been shown to potentiate progression and metastasis of pancreatic cancer. In this study, we investigated the molecular mechanisms associated with the MUC4-induced invasion and metastasis in pancreatic cancer. Stable silencing of MUC4 in multiple pancreatic cancer cells resulted in the downregula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular medicine reports
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2015